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Abstract

We propose a learned image restoration network as

the post-processing module for emerging Versatile Video

Coding (VVC) Intra Profile (https://jvet.hhi.

fraunhofer.de) based image coding to further improve

the reconstructed image quality. The image restoration net-

work is designed using multi-scale spatial priors to effec-

tively alleviate compression artifacts in the decoded images

induced by the quantization based lossy compression algo-

rithms. Experimental results demonstrate the performance

gains of our proposed post-porcessing network with VVC

Intra coding, offering about 6.5% Bjontegaard-Delta Rate

(BD-Rate) reduction for YUV 4:4:4 and 12.2% for YUV

4:2:0, against the VVC Intra without our restoration net-

work on the Test Dataset P/M released by the Computer Vi-

sion Lab of ETH Zurich, where the distortion is Peak Signal

to Noise Ratio (PSNR).

1. Introduction

Image compression algorithms (e.g., JPEG and its suc-

cessor JPEG 2000 [12]) are often used to compress the raw

images to ensure the smooth network delivery and guaran-

tee the satisfactory Quality of Experience (QoE) to some

extent for end users. Meanwhile, some alternatives such as

WebP, BPG (an image compression method uses the mod-

ified High-Efficiency Video Coding (HEVC) [4] Intra Pro-

file) and other intra coding modes of video codecs also show

impressive image compression performance. However, the

lossy image compression is always accompanied by unde-

sired artifacts, such as blocky, motion blurring and ringing,

especially at high compression ratios (or equivalent low bit-

tate), resulting in unpleasant visual experience. With the

exponential growth of the image applications over the Inter-

net (e.g., sharing, exchange, storage, etc), it is necessary to

develop more efficient lossy image compression algorithms

with higher performance.

Recent works have revealed the great potential in lossy

image compression using deep learning. Liu et al., Min-

nen et al., Rippel et al., etc [5, 7, 9] propose end-to-
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Figure 1. The flowchart of the proposed image compression frame-

work, which is consisted of the emerging Versatile Video Cod-

ing (VVC) Intra Profile based image coding and a post-processing

module using an image restoration network.

end image compression frameworks using stacked convolu-

tional neural networks (CNNs) based auto-encoders. These

methods, completely relying on deep learning technologies,

present impressive performance gains with considerable

BD-Rate reduction against existing traditional image com-

pression algorithms, such as JPEG, JPEG2000, and BPG.

Despite of noticed performance improvement obtained by

these learned methodologies, it would take times to use it in

practices, particularly for mobile applications that require

dedicated hardware accelerations.

On the other hand, in-loop filters (e.g., deblocking,

and/or Sample Adaptive Offset (SAO)) are incorporated in

popular HEVC standard to reduce the compression artifacts

for quality improvement. Inspired by this, a number of

learning based methods are utilized as the post-processing

module for compressed images to further improve the vi-

sual quality [6, 2, 8, 11]. These methods are focusing on

eliminating the artifacts of the decoded images, which are

caused by the lossy compression algorithms.

In this work, we propose a learning based image restora-

tion network as the post-processing module for emerging

VVC to further improve its reconstruction quality. VVC In-

tra coding is adopted and appropriate color conversion for

RGB raws is enforced to use VVC compliant YUV source.

Correspondingly, the decoded image in YUV space is trans-

formed back to RGB signal prior to our post-processing net-

work, shown in Fig. 1. We design the network in Fig. 2

using multi-scale spatial priors to effectively reduce com-

pression artifacts in the decoded image.

Experimental results have demonstrated the effective

1



In
p

u
t

C
o

n
v

 5
x

5
 s

tr
id

e
=

2
C

o
n

v
 7

x
7

 s
tr

id
e

=
1

C
o

n
v

 3
x

3
 s

tr
id

e
=

2

R
B

R
B

R
B

R
B

U
p

s
c

a
le

C
a
t

R
B

R
B

R
B

U
p

s
c

a
le

R
B

C
a
t

R
B

R
B

R
B

R
B

O
u

tp
u

t

C
o

n
v

 3
x

3

P
R

e
L

U

C
o

n
v

 3
x

3

RB

Figure 2. Pipeline of our learned image restoration network using multi-scale priors.

performance improvement of our network on top of the

VVC Intra with about 0.3 dB PSNR gain for YUV 4:4:4,

and about 0.5 dB PSNR gain for YUV 4:2:0 respectively at

the same bit rate.

2. Image Restoration Neural Network

As depicted in Fig. 1, the input images in RGB format

are transformed to another color space (e.g., YUV 4:4:4) us-

ing the well-known FFmpeg (https://www.ffmpeg.

org/), to reduce the inter color redundancy for better com-

pression and more bitrate reduction without visual quality

degradation. This is mainly because that VVC Intra now ac-

cepts YUV sources, rather raw RGBs. YUV 4:4:4 samples

are then encoded by VVC Intra to generate the compressed

bitstream that will be decoded at the receiver. YUV to RGB

conversion is involved prior to applying the image restora-

tion based quality enhancement with better visual quality.

The VVC is an emerging International Standard developed

by the joint forces of ISO/IEC MPEG and ITU-T VCEQ

experts, promising another 2× efficiency (e.g., 50% bitrate

reduction at same quality) compared with the state-of-the-

art HEVC.

2.1. Multi-Scale Spatial Priors

As shown specifically in Fig. 2, the image restoration

network mentioned above is designed using multi-scale spa-

tial priors. Different from [11], by setting the different stride

sizes of the convolutional operations respectively, which

can be seen clearly in the figure, the input image is resized

into three scales. Scale-wise convolution kernel sizes are

utilized to capture the multi-scale priors spatially, namely

3 × 3 for 1/16 of the original image, 5 × 5 for 1/4 of the

original image and 7 × 7 for the original image. Such op-

eration can extract features from different scales more pre-

cisely with suitable convolutional patch sizes which coin-

cides with the variable-size Coding Unit (CU) idea utilized

in video codecs to well exploit the regional content charac-

teristics (i.e., rich texture area with small-size convolution

and CU, and stationary background with large-size convo-

lution and CU). Four modified Residual Blocks (RB in the

figure) [3] with kernel size at 3× 3 are applied at each scale

for acquisition of high-dimensional features. We adopt 256

output channels for each convolutional layer at 1/16 of the

original dimension, 128 channels at 1/4 of the original di-

mension and 64 channels at the original dimension. The

skip connection operation which is used in the residual net-

works is also adopted between the start and the end posi-

tions of the residual blocks for better convergency results.

The pixel-shuffle layer [10] is utilized to upsample the fea-

ture maps to next scale for concatenation with the maps

generated by the previous convolutional layer using resid-

ual connections. With such architecture, spatial information

of each scale can be fused together closely for final quality

enhancement of the image, which helps restore the block-

to-block correlation effectively.

2.2. Loss Function

The MSE is adopted as the loss function of the image

restoration network for its positive correlation with PSNR.

In addition, we also use L1 norm to replace the MSE for

fine-turning, which achieves another improvement on top

of the model pre-trained with MSE.

3. Experimental Studies

We train the image restoration network using the train-

ing dataset called DIV2K [1] with the images compressed

by the intra coding filters of the VVC as the inputs and the

original images as the labels. The input sources sampled at

YUV 4:4:4 and YUV 4:2:0 are generated with fixed quanti-

zation parameters (QPs) respectively for training. Not that

several QPs (e.g., 25, 30, 35, etc) are adopted as the vari-

ables instead to fit different segments of bit rate so that the
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Figure 3. Compression performance on the Test Dataset, compared

with VVC (with input source sampled at YUV 4:4:4)

network can learn the compression artifacts with certain QP

accordingly.

3.1. Model Training

Our experiments are performed on a desktop with an i7-

7700K CPU and a NVIDIA Quadro P5000 GPU. We choose

PyTorch platform to implement the proposed model. The

model is trained using the Adam optimizer with β1 = 0.9,

β2 = 0.999 and ǫ = 10
−8. The learning rate is 10

−4 ini-

tially, which is divided by 10 after 200 epochs. The batch

size is set at 16 with the input size at 192 × 192 basically,

which is cropped from the dataset randomly every time to

avoid the overflow of the memory. It is worth to mention

that the results can be better when we increase the crop size.

It is mainly because the multi-scale architecture can benefit

from the larger image size with more pixels.

We train the network using a transfer learning manner.

Models of higher QPs are trained based on parameters from

models of lower QPs. (e.g., network parameters at QP 22

is used to derive network models at QP 27). Such step-

wise procedure leads to faster convergence of parameters

and better results than training the network at different QPs

independently.

3.2. Performance Evaluation

We evaluate our network on the Test Dataset P/M with

330 images totally released by the Computer Vision Lab

of ETH Zurich, and compare with the VVC using the

model correspondingly trained respectively. Fig. 3 shows

the PSNR performance on the Test Dataset with the in-

put sources of VVC sampled at YUV 4:4:4 and our net-

work achieves 0.3 dB gains at each bit rate point and aver-

age 6.5% BD-Rate reduction over default VVC Intra. We

also replace our image restoration network using the AR-

CNN [2] which is optimized using the same settings as our

network, and the BD-Rate curve of the ARCNN is almost

overlapped with the VVC Intra. It further evident the effec-

tiveness of our image restoration network.
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Figure 4. Compression performance on the Test Dataset, compared

with VVC (with input source sampled at YUV 4:2:0)
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Figure 5. Four image snapshots from the Test Dataset released by

the Computer Vision Lab of ETH Zurich.

Figure 4 shows the PSNR performance on the Test

Dataset for YUV 4:2:0 source and our network achieves 0.5

dB gains at each bit rate point and corresponding average

12.2% BD-Rate reduction.

Moreover, we select four typical images with different

types and complex scenes which are usually difficult for ef-

ficient compression from the dataset, as shown in Fig. 5.

The PSNR gains are achieved by 0.2 dB, 0.2 dB, 0.25 dB

and 0.15 dB, respectively, when using our proposed net-

work as the post-processing on top of VVC Intar. The

BD-Rate has been respectively reduced by 4.35%, 4.03%,

4.56% and 2.99% against VVC with YUV 4:4:4 input, as

illustrated in Fig. 6.

For the bitrate budget imposed by the Workshop and

Challenge on Learned Image Compression (CLIC) of

CVPR 2019, i.e., each encoded image can’t exceed the bi-

trate 0.15 bpp (bits per pixel), four different QP levels (i.e.,

QP ∈ 35, 36, 37, 38) are selected in Rate Distortion Opti-
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Figure 6. Compression performance for selected four images,

compared with VVC with YUV 4:4:4 input.

mization (RDO). In the beginning, all images are encoded

at the highest QP (QP 38) as the initial state. Then im-

age with the maximum
PSNRi−1−PNSRi

filesizei−1−filesizei
will be encoded

at a lower QP iterativeely until the overall file size reaches

to the file size limitation. The final results could be found

on the leaderboard (http://www.compression.cc/

leaderboard/) and our team name is NJUVisionPSNR.

4. Conclusion

In this work, we propose an image restoration network

as the post-processing module combining with the intra

coding profile of the VVC to further improve the quality

of reconstructed image. Experiments demonstrate notice-

able improvements in both subjective and objective quality

measurement at the same bit rate. The designed restora-

tion network has utilized multi-scale spatial priors to al-

leviate or eliminate compression artifacts induced by the

traditional codecs. Given that our method is served as a

post-processing module, it can be easily patched to existing

video codecs for general applications. As for future studies,

temporal prior is worth for exploration to further improve

the restoration efficiency.
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